

Delivering the Right Results

NUTRIENTEN VOOR NUTRIENTEN VNA Symposium at DSM Deinze 05.12.2013

Presentation

- LECO Background
- Nitrogen/Protein Determination Techniques
- LECO Nitrogen Determination
 - Vertical Furnace (FP-628™)
 - Horizontal Furnace (TruMac[™] N)

by Dipl.- Ing. Beate Boisten

LECO Background

- Privately owned U.S. Company for 77 years
- Headquartered in Saint Joseph, MI
- Diverse Instrumentation offerings
 - Organic and Inorganic Elemental Analysis
 - Metallography
 - Microscopy and Image analysis
 - Mass Spectrometry (TOF)

General Markets 2011-.wmv

• 25 LECO subsidiaries representing over 100 countries

Why Nitrogen / Protein Determination?

Quantitative Analysis

- Nutritional labeling (protein) for foods and feeds
- Material characterization education/research, commercial and regulatory

Dietary Fiber 0g

Sugars 5g Protein 5g Vitamin A

Vitamin C

Calcium

- Soil/plant science

- Grade and value for feeds
- Food, agricultural and chemical processing
 - Milling applications (starch, flour, oilseeds)
 - Chemical and Specialty materials processing (plastics, resins, adhesives, etc.)

4%

2%

20%

Nitrogen Cycle in the Soil

Primary Techniques for Determining Nitrogen

- Kjeldahl and Dumas based techniques
 - Most common nitrogen determination techniques
 - Determine nitrogen content in a sample to calculate protein content
 - Nitrogen concentration is multiplied by a factor dependent on a specific matrix (typically between 5.70 and 6.38) to calculate the concentration of raw protein in the sample.
 - **Dumas** technique is commonly referred to as "Combustion"

Techniques for Determining Nitrogen

- **Kjeldahl** Nitrogen Determination
 - Classical wet chemical digestion and titration-based method long used (developed in 1883) and widely accepted; considered the primary Nitrogen determination method
 - Several hundred mg- to gram-sized sample is digested in concentrated sulfuric acid with a catalyst; nitrogen is converted to ammonium sulfate
 - Concentrated sodium hydroxide (NaOH) is added to form ammonia, which is distilled into standard acid for quantification by titration

Techniques for Determining Nitrogen

• Kjeldahl Nitrogen Determination

– Disadvantages

- Most effective Kjeldahl catalysts (containing mercury or selenium) are not used due to environmental and health concerns
- CuSO₄/TiO₄ based Kjeldahl catalyst is typically utilized, resulting in a lower Nitrogen recovery during digestion step and a low Nitrogen bias
- Long analysis times (several hours)
- High cost-per-analysis
- Occupational health and safety issues
 - **Strong acid** and base reagents boiling reagents required
 - Fume handling
 - Waste disposal
- Requires analytically trained technician

Nitrogen determination with Dumas

Dumas principle

- \rightarrow Sample combustion by pure oxygen
- \rightarrow Combustion / oxidation of the protein-N to NO_x
- \rightarrow Complete reduction of NO_x to N₂ by copper metal
- → Removal of "disturbing" gases (excessive O_2 ; CO_2 , Water, ...)
- → Detection of the nitrogen with TCD (thermal conductivity detector)
- → Calculation protein % = factor x nitrogen%
- Since ~ 25 years established in the market
- Meanwhile standards like : DIN, ISO, AOAC, §64LFBG etc....
 - => Referenced method

Norms

AOAC

Instruments	Method	Constituent	Materials
FP628, FP-528 TruSpec [®] N, TruMac [®]	990.03	Crude Protein	Animal Feed
N	992.15		Meat/Meat Products & Petfoods
	992.23		Cereal Grain & Oil Seed Products
	993.13 Nitrogen	Nitrogen	Fertilizer
	997.09	Nitrogen/ Protein	Beer, Wort, Brewing Grains (Total Protein by Calculation)

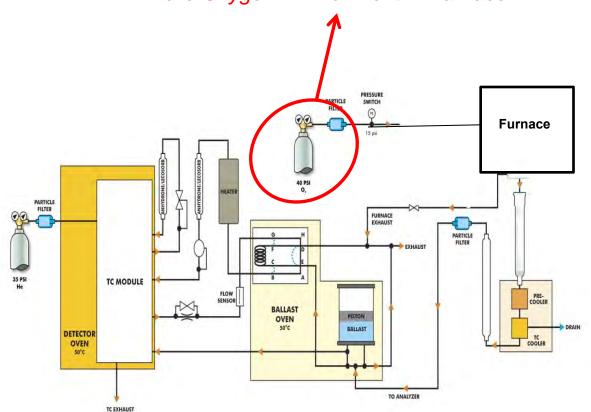
ISO

Instruments	Method	Elements	Materials
FP628, FP528, TruSpec N, TruMac N	14891	Total Nitrogen/Protein	Milk and Milk Products
FP628, FP528, TruSpec N, TruMac N	16634	Total Nitrogen/Protein	Food Products, Oilseed, and Animal Feeds

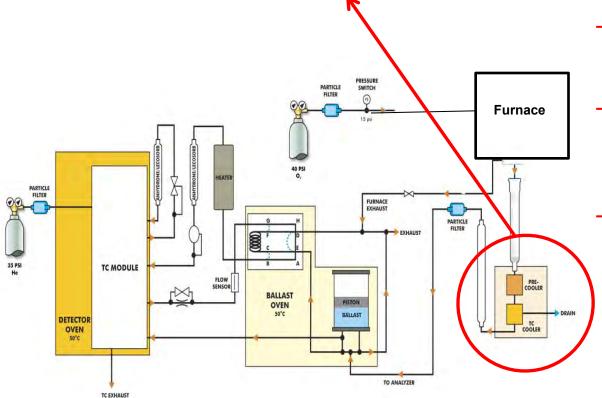
- § 64 LFBG : German official food methodology
- VD LUFA standards : Agricultural Society of Germany (different standards)

- FP-628[™] utilizes a <u>vertical furnace</u>
- Sample mass 50 mg up to 1 g
- Quartz furnace tube with a maximum temperature of 1050°C
- Tin capsules or foils used to encapsulate sample
- Reticulated crucible collects ash from sample and tin cap or foil
 - Crucible lifetime matrix dependent (200-400 samples)

- TruMac N utilizes a horizontal furnace
- Sample mass 50 mg up to 3 g
- Ceramic furnace
 - Designed for handling macro sample combustion
 - Maximum Temperature of 1450°C
- Large reusable ceramic boats
 - Facilitate macro sample handling
 - Retain sample ash for post analysis removal



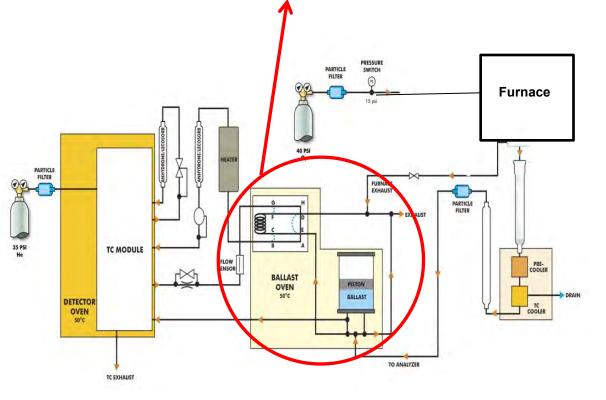
Both vertical and horizontal furnace designs utilize a
 Pure Oxygen Environment in Furnace



- Ensures complete combustion
- Eliminates the need for additional chemical or metal oxidizers and reagents in flow path
- Sample matrix independent (feeds, food, bones, meat, etc.)
- Increases speed of combustion
- Allows large sample mass capability

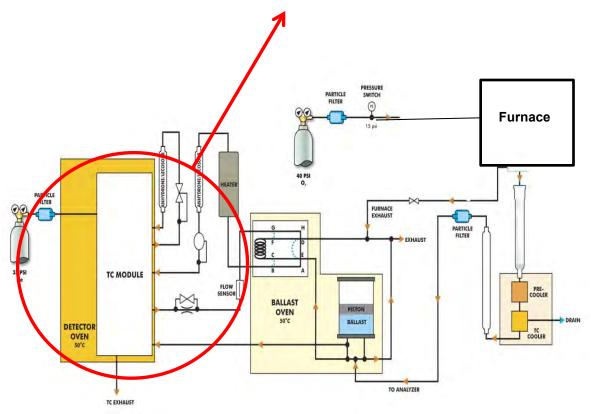
• Both vertical and horizontal furnace designs utilize a

Thermo Electric Cooler

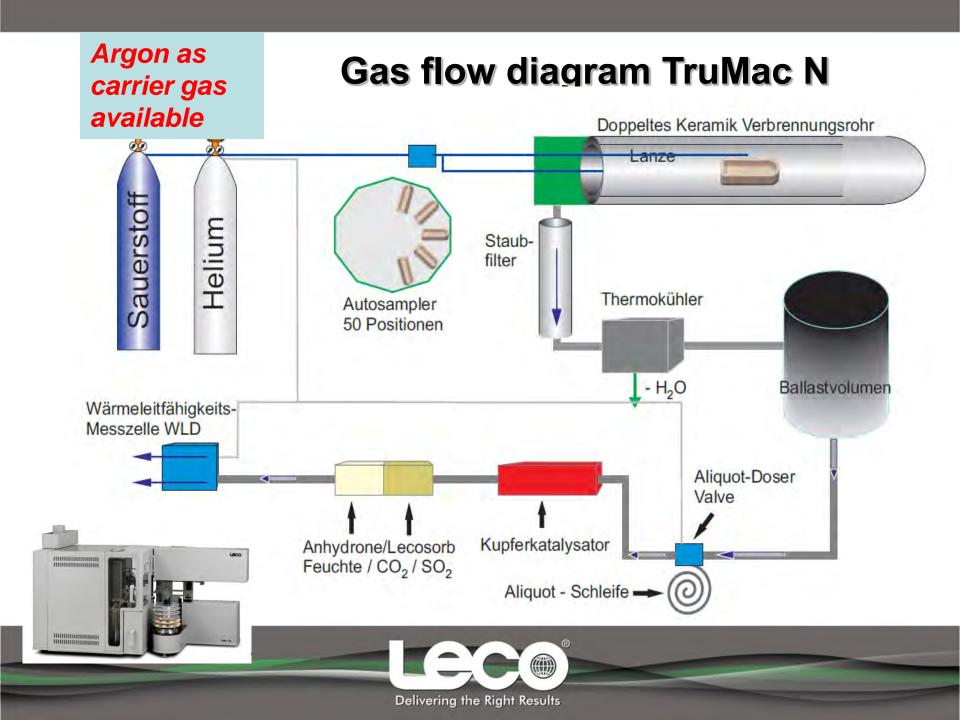


- Removes moisture from combustion gas by cooling/condensing moisture
- Eliminates the need for chemical reagents (Anhydrone) to remove moisture from combustion gas
- Removes other unwanted combustion gases via interaction with condensing moisture
 - Acid gases (sulfur, chlorine, halogens, etc.)
 - Combustion particulates

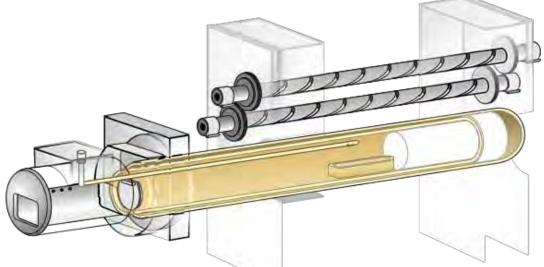
• Both vertical and horizontal furnace designs utilize a


Combustion Gas Collection and Aliquot Dose System

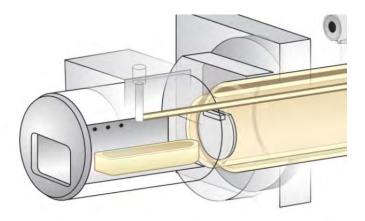
- Collects and equilibrates all combustion gas for aliquot collection
- Eliminates treating the whole combustion gas with reduction reagents and carbon scrubbers
- Greatly extends lifetime of carbon scrubber and reduction reagents
 - Allows large sample mass capability
- Greatly lowers the cost-per-analysis



Both vertical and horizontal furnace designs utilize a
 Thermal Conductivity Cell for Nitrogen Detection

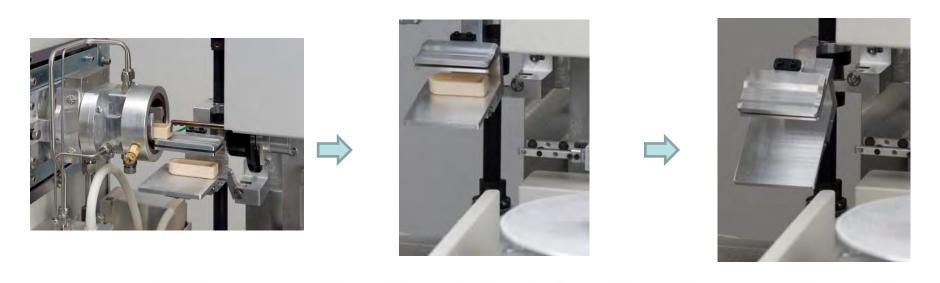

- Wide linear dynamic range
- Low noise and drift
- Low helium consumption

TruMac N


- Ceramic horizontal furnace designed for macro samples
 - Robust design utilizes 6 heating elements for increased reliability and heating efficiency with a maximum temperature of 1450°C
 - **Pure oxygen** environment ensures **complete combustion** of macro samples
 - Ceramic **lance** directs additional oxygen flow **directly onto the sample**
 - No reagents required within furnace

TruMac N

- **Open ceramic** boats provide sample **surface area** enhancing:
 - Efficient atmospheric purging of macro samples
 - Complete combustion of heterogenous macro samples



TruMac N

- Automated sample **ash removal** from furnace
- Sample ash is retained and removed in ceramic boat post analysis
 - Furnace remains free of sample ash debris and residue build up
 - Reduces the need for routine furnace maintenance
 - Eliminates the need for a furnace crucible

Delivering the Right Results

TruMac N Advantages

- The TruMac N horizontal furnace design offers additional benefits
 - Ability to handle macro samples **up to 3 g**, ideal for:
 - Heterogeneous and difficult to prepare samples (meats and feeds, etc.)
 - Low-level nitrogen samples (starches, slurries, wastewater, etc.)
 - Low density or bulky samples (filter papers/bags, celite)
 - Increased ease of sample handling and preparation
 - Large reusable ceramic boats
 - Automated sample **ash removal** from furnace

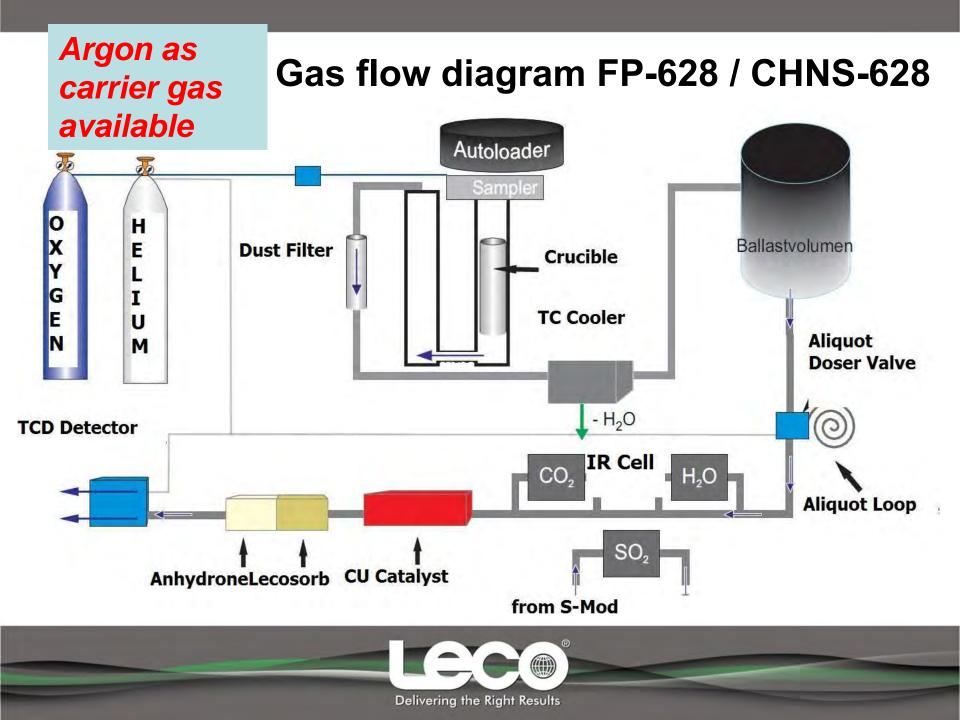
TruMac N Specifications

- Instrument Range @ 1.0 g*
 - Nitrogen
 20 ppm or 0.002% to 30% (0.02 mg to 300 mg Nitrogen)

10 ppm or 0.3% RSD (whichever is greater)

Windows[®]-based software on an external PC

*Adjusting sample size may extend instrument range


- Precision Range @ 1.0 g
 - Nitrogen
- Analysis Time
- Sample Size
- Furnace Resistance
- Operational Control
- Autoloader 50-position
- Electrical Power Requirements
 - Instrument
 230 V~, 50/60 Hz, single phase
 - Autoloader 1150/230 V~, 50/60 Hz, single phase

4 minutes nominal

Up to 3.0 g, 1.0 g nominal

1450°C max (1050°C nominal)

FP-628

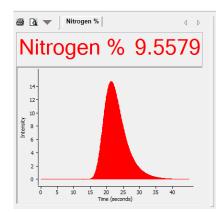
• A sample is weighed into a foil or capsule and loaded into autoloader

- Sample is loaded into purge chamber removing atmospheric gas
- Sample introduced to furnace

FP-628

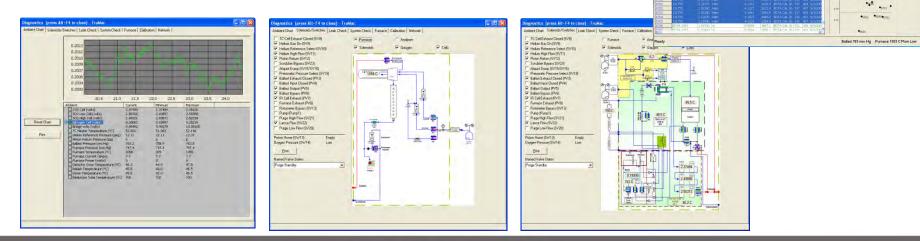
- Combustion gases are swept from the furnace into the thermo electric cooler
- Moisture efficiently removed without the use of chemical anhydrone

• Combustion gas is swept onto the combustion gas collection and aliquot collection system


FP-628

Aliquot gas is swept through a reduction reagent tube (lifetime ~ 600 analyses) then passes through Lecosorb and Anhydrone reagent tube The aliquot gas passes through a thermal conductivity cell for nitrogen detection

FP-628 Specifications


- Instrument Range
 - Nitrogen
 Precision Range
 - Nitrogen
- Analysis Time
- Sample Mass
 - N
- Autoloader

- 0.04 mg to 50 mg Nitrogen; 80 ppm 10 % Nitrogen @ 500 mg
- 0.02 mg Nitrogen or 0.5% RSD (whichever is greater)
 - 4.5 minutes nominal
- up to 750 mg, 500 mg nominal
 - 30-position, expandable up to 120
 - FP628 range:
 - 500 mg sample mass
 - Nitrogen (80ppm to 10%)
 - Low end = (0.04 mg N / 500 mg sample) * 100 = 0.08% or 80 ppm N
 - High end = (50 mg N / 500 mg sample) *100 = 10% N

LECO Software

- LECO Windows-based operating software
 - Monitor real-time internal component readings
 - Expanded interactive diagnostic screens aiding
 - Troubleshooting
 - Improve serviceability

Nitrogen % 1.8078

5 10 15 dt 5 5 % at

Ballast 763 mm Hg Furnace 1052 C Flow Lo

Nitrogen %

- extended reagent lifetime, less instrument downtimes, low cost-per-analysis!
 - **Exclusive** use of **Oxygen** within Combustion Furnace results in:
 - Ensures **complete combustion** and superior recovery of elements
 - Speeds combustion
 - Allows for use of macro sample mass
 - No need for other expensive reagent oxidizers within combustion system
 - Ballast and Aliquot Combustion Gas Handling system
 - Allows for the exclusive use of pure oxygen in the furnace (no soot!)
 - Eliminates treating the whole combustion gas with reduction reagents and carbon scrubbers (10 ml instead of 5-10 l)
 - Significantly extends lifetime of reduction reagents Cu (~600 analyses with one small tube and carbon scrubber

TruMac N Data

- Flour Matrix Sample Data
 - ~0.5 g sample mass

0.233 10

Wheat Flour Data

eat Flour		2.5367 2.5394	15.934 15.854 15.871
eat Flour	0.50370	2.5394	2 / T S T F S
			15.871
eat Flour	0 50170		
	0.00170	2.5290	15.806
eat Flour	0.50230	2.5360	15.850
eat Flour	0.50300	2.5329	15.830
eat Flour	0.51440	2.5426	15.891
eat Flour	0.50210	2.5366	15.854
eat Flour	0.50310	2.5378	15.861
eat Flour	0.50180	2.5306	15.816
e Std. De	viation F	RSD Count	
4 0.005	1	.006 10	
	1 0	0.233 10	
	eat Flour eat Flour eat Flour eat Flour eat Flour eat Flour	Pat Flour 0.50300 Pat Flour 0.51440 Pat Flour 0.50210 Pat Flour 0.50310 Pat Flour 0.50310 Pat Flour 0.50180 Pat Flour 0.50180 Pat Flour 0.50180 Pat Flour 0.50180	Part Flour 0.50300 2.5329 Part Flour 0.51440 2.5426 Part Flour 0.50210 2.5366 Part Flour 0.50310 2.5378 Part Flour 0.50180 2.5306 Part Flour 0.50180 2.5306 Part Flour 0.50180 2.5306 Part Flour 0.50180 2.5306 Part Flour 0.50180 2.5306

0.0369

• Easy-of-use operating software with results management and data export (LIMS)

Protein % 15.857

• Wide dynamic range linear calibration with drift correction

Example Ham

				/				Ham	Data	a
Name	Con	nments	Mass	Nitroge	en %	Protein	1%	Method		
131755	Han	n	1.98300	4.1351		25.844		EDTA CAL	(8-28-09)	1350C
131755	Han	n	2.04480	4.1333		25.833		EDTA CAL	(8-28-09)	1350C
131755	Han	n	2.18440	4.1360		25.850	2	EDTA CAL	(8-28-09)	1350C
131755	Han	n	2.12180	4.1238		25.773		EDTA CAL	(8-28-09)	1350C
131755	Han	n	2.16780	4.1794		26.121		EDTA CAL	(8-28-09)	1350C
131755	Han	n	2.21370	4.1312	2-24	25.820	ļ. 1	EDTA CAL	(8-28-09)	1350C
131755	Han	n	2.02260	4.1227		25.767		EDTA CAL	(8-28-09)	1350C
131755	Han	n	1.95390	4.1461	(E. ±3)	25.913		EDTA CAL	(8-28-09)	1350C
131755	Han	n	2.22070	4.1827		26.142	/	EDTA CAL	(8-28-09)	1350C
131755	Han	n	2.11600	4.1324		25.827	-	EDTA CAL	(8-28-09)	1350C
-					DOD	10			0 m	
Element			e Std. De	viation			t			
Mass		2.10287			4.592					
Nitroger			0.02145	5	0.518					
Protein ^o	%	25,889	0.1341		0.518	3 10				

Example Meat

Turkey Data

Name	Comments	Mass	Nitrogen %	Protein %
131756	Turkey	1.04190	4.2318	26.449
131756	Turkey	1.04950	4.2162	26.351
131756	Turkey	1.04560	4.1914	26.196
131756	Turkey	1.01480	4.2385	26.491
131756	Turkey	1.04090	4.2423	26.514
131756	Turkey	1.06230	4.2205	26.378
131756	Turkey	1.08060	4.2241	26.400
131756	Turkey	1.10820	4.2362	26.476
131756	Turkey	1.07540	4.1897	26.186
131756	Turkey	1.07850	4.1931	26.207

Element	Average	Std. Deviation	RSD	Count
Mass	1.05977	0.03	2.513	10
Nitrogen %	4.2184	0.02030	0.481	10
Protein %	26.365	0.1269	0.481	10

Example Starch

Name	Gewicht in g	Stickstoff in %	Proteinfaktor	Protein in %	Datum
Stärke A	~1 g	0,0427	6,25	0,2669	01.06.2013
Stärke A	~1 g	0,0424	6,25	0,2651	01.06.2013
Stärke A	~1 g	0,0421	6,25	0,2628	01.06.2013
Stärke A	~1 g	0,0421	6,25	0,2631	01.06.2013
Stärke A	~1 g	0,0421	6,25	0,2628	01.06.2013
Stärke A	~1 g	0,0427	6,25	0,2670	01.06.2013
Stärke A	~1 g	0,0422	6,25	0,2638	01.06.2013
Stärke A	~1 g	0,0419	6,25	0,2619	01.06.2013
Stärke A	~1 g	0,0427	6,25	0,2669	01.06.2013
Stärke A	~1 g	0,0427	6,25	0,2668	01.06.2013
Mittelwert		0,0424		0,2647	
Abweichung					
(+-)		0,00033		0,00206	
RSD		0,78		0,78	

Example homogenous chemical

Caffeine Data

Name	Mass	Description	Carbon %	Nitrogen %	Analysis Date
502-205 1010	0.1522	Caffeine @ 49.48%C, 28.85%N	49.311	28.816	1/7/2011 12:21:49 PM
502-205 1010	0.1516	Caffeine @ 49.48%C, 28.85%N	49.354	28.848	1/7/2011 12:28:36 PM
502-205 1010	0.1524	Caffeine @ 49.48%C, 28.85%N	49.339	28.871	1/7/2011 12:35:24 PM
502-205 1010	0.1502	Caffeine @ 49.48%C, 28.85%N	49.238	28.810	1/7/2011 12:42:12 PM
502-205 1010	0.1547	Caffeine @ 49.48%C, 28.85%N	49.325	28.862	1/7/2011 12:49:00 PM
502-205 1010	0.1516	Caffeine @ 49.48%C, 28.85%N	49.341	28.875	1/7/2011 12:55:48 PM
502-205 1010	0.1527	Caffeine @ 49.48%C, 28.85%N	49.264	28.852	1/7/2011 1:02:36 PM
502-205 1010	0.1537	Caffeine @ 49.48%C, 28.85%N	49.322	28.902	1/7/2011 1:09:24 PM
502-205 1010	0.1538	Caffeine @ 49.48%C, 28.85%N	49.503	28.962	1/7/2011 1:16:11 PM
502-205 1010	0.1527	Caffeine @ 49.48%C, 28.85%N	49.264	28.859	1/7/2011 1:22:59 PM
			•	•	

Element	Average	Std. Deviation	RSD	Count
Mass	0.1526	0.001	0.847	10
Carbon %	49.326	0.0732	0.148	10
Nitrogen %	28.866	0.0433	0.150	10
			/	

FP628 Series Software

Barley 502-277

Name	Mass	Description	Nitrogen %	Analysis Date
Barley 502-277 1008	0.2542	@44.72%C, 1.79%N	1.7778	5/19/2011 3:21:20 PM
Barley 502-277 1008	0.2537	@44.72%C, 1.79%N	1.7790	5/19/2011 3:25:04 PM
Barley 502-277 1008	0.2519	@44.72%C, 1.79%N	1.7905	5/19/2011 3:28:49 PM
Barley 502-277 1008	0.2533	@44.72%C, 1.79%N	1.7807	5/19/2011 3:32:33 PM
Barley 502-277 1008	0.2521	@44.72%C, 1.79%N	1.7889	5/19/2011 3:36:19 PM

Element	Average	Std. Deviation	RSD	Count
Mass	0.2530	0.001	0.397	5
Nitrogen %	1.7834	0.00589	0.330	5

FP628 Data

628 SERIES

LECO Corn Flour 502-563

Name	Mass	Description	Nitrogen %	Analysis Date
Corn Flour 501-563 1011	0.2529	@1.46%N	1.4564	5/19/2011 3:40:04 PM
Corn Flour 501-563 1011	0.2545	@1.46%N	1.4569	5/19/2011 3:43:50 PM
Corn Flour 501-563 1011	0.2513	@1.46%N	1.4574	5/19/2011 3:47:35 PM
Corn Flour 501-563 1011	0.2505	@1.46%N	1.4544	5/19/2011 3:51:20 PM
Corn Flour 501-563 1011	0.2530	@1.46%N	1.4499	5/19/2011 3:55:04 PM

Element	Average	Std. Deviation	RSD	Count
Mass	0.2524	0.002	0.621	5
Nitrogen %	1.4550	0.00305	0.210	5

FP628 Data

628 SERIES

Glycine 0.1% N Solution

Name	Mass	Description	Nitrogen %	Analysis Date
Glycine 0.1%	0.2937	@0.172%C, 0.100%N	0.09916	5/24/2011 12:00:24 PM
Glycine 0.1%	0.3198	@0.172%C, 0.100%N	0.09782	5/24/2011 12:04:10 PM
Glycine 0.1%	0.3088	@0.172%C, 0.100%N	0.09772	5/24/2011 12:07:55 PM
Glycine 0.1%	0.3237	@0.172%C, 0.100%N	0.09677	5/24/2011 12:11:40 PM
Glycine 0.1%	0.3203	@0.172%C, 0.100%N	0.10076	5/24/2011 12:15:25 PM

Element	Average	Std. Deviation	RSD	Count
Mass (0.3133	0.01	3.922	5
Nitrogen %	8.09845	0.001549	1.574	5

Example Argon / Helium

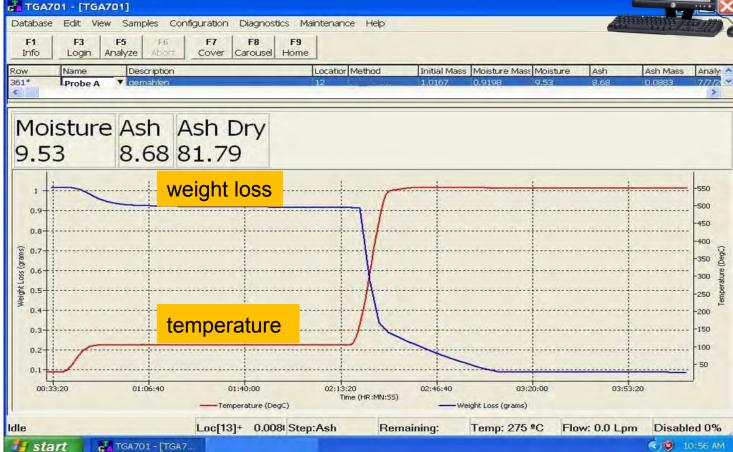
	Teststärke mit Helium		Test	Teststärke mit Argon		
	Einwaage	N in %	Protein in %	Einwaage	N in %	Protein in %
Eichstärke	~ca 2 g	0,0340	0,2126	~ca 2 g	0,0351	0,2192
Eichstärke	~ca 2 g	0,0345	0,2157	~ca 2 g	0,0348	0,2174
Eichstärke	~ca 2 g	0,0350	0,2184	~ca 2 g	0,0334	0,2085
Eichstärke	~ca 2 g	0,0347	0,2166	~ca 2 g	0,0343	0,2141
Eichstärke	~ca 2 g	0,0347	0,2166	~ca 2 g	0,0353	0,2204
Eichstärke	~ca 2 g	0,0343	0,2143	~ca 2 g	0,0349	0,2183
Eichstärke	~ca 2 g	0,0342	0,2137	~ca 2 g	0,0340	0,2124
Eichstärke	~ca 2 g	0,0348	0,2174	~ca 2 g	0,0342	0,2137
Eichstärke	~ca 2 g	0,0342	0,2137	~ca 2 g	0,0338	0,2109
Eichstärke	~ca 2 g	0,0355	0,2217	~ca 2 g	0,0351	0,2193
Eichstärke	~ca 2 g	0,0342	0,2138	~ca2g	0,0350	0,2185
Mittelwert:		0,0345			0,0345	
SA		0,00043			0,00063	
RSA		1,24			1,84	

and

TGA 701: Moisture and Ash

Samples logged into software and empty crucibles loaded into TGA701 carousel for taring

Green button on TGA701 is pressed to begin the tare


TGA 701

Delivering the Right Results

TGA-701

The **TGA-701** measures the weight loss of organic, inorganic, and synthetic material

as a function of temperature in a controlled environment.

The instrument consists of a computer and a multiple sample furnace that allows up to 19 samples to be analyzed simultaneously

Hartelijk dank voor uw belangstelling!

